Cautious label ranking with label-wise decomposition
نویسندگان
چکیده
منابع مشابه
Labelwise versus Pairwise Decomposition in Label Ranking
Label ranking is a specific type of preference learning problem, namely the problem of learning a model that maps instances to rankings over a finite set of predefined alternatives (labels). State-of-the-art approaches to label ranking include decomposition techniques that reduce the original problem to binary classification; ranking by pairwise comparison (RPC), for example, constructs one bin...
متن کاملCase-Based Label Ranking
Label ranking studies the problem of learning a mapping from instances to rankings over a predefined set of labels. We approach this setting from a case-based perspective and propose a sophisticated k-NN framework as an alternative to previous binary decomposition techniques. It exhibits the appealing property of transparency and is based on an aggregation model which allows to incorporate a br...
متن کاملLabel Ranking with Semi-Supervised Learning
Label ranking is considered as an efficient approach for object recognition, document classification, recommendation task, which has been widely studied in recent years. It aims to learn a mapping from instances to a ranking list over a finite set of predefined labels. Traditional solutions for label rankings cannot obtain satisfactory results by only utilizing labeled data and ignore large amo...
متن کاملLabel Ranking Algorithms: A Survey
Label ranking is a complex prediction task where the goal is to map instances to a total order over a finite set of predefined labels. An interesting aspect of this problem is that it subsumes several supervised learning problems such as multiclass prediction, multilabel classification and hierarchical classification. Unsurpisingly, there exists a plethora of label ranking algorithms in the lit...
متن کاملLabel Partitioning For Sublinear Ranking
We consider the case of ranking a very large set of labels, items, or documents, which is common to information retrieval, recommendation, and large-scale annotation tasks. We present a general approach for converting an algorithm which has linear time in the size of the set to a sublinear one via label partitioning. Our method consists of learning an input partition and a label assignment to e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Operational Research
سال: 2015
ISSN: 0377-2217
DOI: 10.1016/j.ejor.2015.05.005